秋冬皮肤干燥怎么办?

月经不调影响怀孕吗?

怎样做才能睡得香?

糖尿病吃什么好?

脖子酸痛是颈椎病吗?

最近搜索
热门搜索

PET-CT融合扫描装置工作原理及临床应用

转载 来源: 医学影像技术 2012/6/25 12:34:20 举报/反馈

  随着核医学和医学影像学技术的不断进步和发展,许多不同功能和特性的高技术产品经优化组合后应用于临床,为医学研究和临床诊断提供了极大的便利。正电子发射体层——多层螺旋CT图像融合全扫描装置(筒称PET-CT)就是将CT和PET两种不同成像原理的设备有机、互补地结合在一起,各自发挥优点、弥补不足,从而获得一种反映人体解剖图像与反映人体分子代谢情况的功能图像完全融合的全新影像学图像。PET-CT集高灵敏度、高特异性的先进核医学技术与高清晰度、高组织分辨率的多层螺旋 CT于一身。把核医学影像从Nu-Clear image(原意为核医学影像图像,由于图像清晰度差,被戏称为不清晰图像)提高到了Clear image(清晰图像)的水平。PET-CT融合图像对疾病的早期诊断、病灶定性、手术和放射计划治疗定位、小病

  变的诊断与鉴别以及一些目前仍不清楚的代谢疾病研究和受体疾病研究具有重要价值,是当前国内外核医学影像学的最新发展方向。

  [B]一 、PET显像的基本原理[/B]

  PET是英文 Positron Emission Tomograpny的缩写。其临床显像过程为:将发射正电子的放射性核素(如F-18等)标记到能够参与人体组织血流或代谢过程的化合物上,将标有带正电子化合物的放射性核素注射到受检者体内。让受检者在PET的有效视野范围内进行 PET显像。放射核素发射出的正电子在体内移动大约1mm后与组织中的负电子结合发生湮灭辐射。产生两个能量相等(511 KeV)、

  方向相反的γ光子。由于两个光子在体内的路径不同,到达两个探测器的时间也有一定差别,如果在规定的时间窗内(一般为 0-15 us),探头系统探测到两个互成180度(士0.25度)的光子时。即为一个符合事件,探测器便分别送出一个时间脉冲,脉冲处理器将脉冲变为方波,符合电路对其进行数据分类后,送人工作站进行图像重建。便得到人体各部位横断面、冠状断面和矢状断面的影像。

  PET系统的主要部件包括机架、环形探测器、符合电路、检查床及工作站等。探测系统是整个正电子发射显像系统中的主要部分,它采用的块状探测结构有利于消除散射、提高计数率。许多块结构组成一个环,再由数十个环构成整个探测器。每个块结构由大约36个锗酸铋(BGO)小晶体组成,晶体之后又带有2对(4个)光电倍增管(PMT)(请看图1)。BGO晶体将高能光子转换为可见光.PMT将光信号转换成电信号,电信号再被转换成时间脉冲信号,探头层间符合线路对每个探头信号的时间耦合性进行检验判定,排除其它来源射线的干扰,经运算给出正电子的位置,计算机采用散射、偶然符合信号校正及光子飞行时间计算等技术,完成图像重建。重建后的图像将PET的整体分辨率提高到2 mm左右。

  PET采用符合探测技术进行电子准直校正,大大减少了随机符合事件和本底,电子准直器具有非常高的灵敏度(没有铅屏蔽的影响)和分辨率。另外.BGO晶体的大小与灵敏度成正相关性。块状结构的PET探头。能进行2D或3D采集。2D采集是在环与环之间隔置铅板或钨板,以减少散射对图像质量的影响 2D图像重建时只对临近几个环(一般2-3个环)内的计数进行符合计算,其分辨率高,计数率低;3D数据采集则不同。取消了环与环之间的间隔, 在所有环内进行符合计算,明显地提高了计数率,但散射严重, 图像分辨率也较低,且数据重组时要进行大量的数据运算。两种采集方法的另一个重要区别是灵敏度不同,3D采集的灵敏度在视野中心为最高。

${FDPageBreak}

 

  [B]二 、多层螺旋CT的工作原理[/B]

  CT的基本原理是图像重建, 根据人体各种组织(包括正常和异常组织)对X射线吸收不等这一特性, 将人体某一选定层面分成许多立方体小块(也称体素)X射线穿过体素后, 测得的密度或灰度值称为象素。X射线束穿过选定层面, 探测器接收到沿X射线束方向排列的各体素吸收X射线后衰减值的总和,为已知值,形成该总量的各体素X射线衰减值为未知值,当X射线发生源和探测器围绕人体做圆弧或圆周相对运动时。用迭代方法

  求出每一体素的X射线衰减值并进行图像重建,得到该层面不同密度组织的黑白图像。

  螺旋CT突破了传统CT的设计,采用滑环技术, 将电源电缆和一些信号线与固定机架内不同金属环相连运动的X射线管和探测器滑动电刷与金属环导联。球管和探测器不受电缆长度限制,沿人体长轴连续匀速旋转, 扫描床同步匀速递进(传统 CT扫描床在扫描时静止不动),扫描轨迹呈螺旋状前进,可快速、不间断地完成容积扫描。

  多层螺旋CT的特点是探测器多层排列。是高速度、高空间分辨率的最佳结合。多层螺旋CT的宽探测器采用高效固体稀土陶瓷材料制成。每个单元只有 0.5、1或 1.25 mm厚, 最多也只有5 mm厚 薄层扫描探测器的光电转换效率高达99%能连续接收X射线信号。余辉极短, 且稳定性好。多层螺旋CT能高速完成较大范围的容积扫描, 图像质量好, 成像速度快,具有很高的纵向分辨率和很好的时间分辨率。大大拓宽了CT的应

  用范围,与单层螺旋CT相比。采集同样体积的数据, 扫描时间大为缩短,在不增加X射线剂量的情况下, 每15 S左右就能扫描一个部位;5S内可完成层厚为3 mm的整个胸部扫描;采用较大的螺距 P值,一次屏气20 S,可以完成体部扫描;同样层厚, 同样时间内, 扫描范围增大4倍。扫描的单位时间覆盖率明显提高, 病人接受的射线剂量明显减少,x线球管的使用寿命明显延长,同时,节省了对比剂用量,提高了低对比分辨率和空间分辨率,明显减少了噪声、伪影及硬化效应。另外,还可根据不同层厚需要自动调节X射线锥形线束的宽度,经过准直的X射线束聚焦在相应数目的探测器上 探测器通过电子开关与四个数据采集系统(DAS)相连。每个DAS能独立采集完成一套图像, 按照DAS与探测器匹配方式不同。通过电子切换可以选择性地获得1层、2层或4层图像,每层厚度可自由选择(0.5、1.0、1.25 mm或 5、10 mm。采集的数据既可做常规图像显示, 也可在工作站进行后处理, 完成三维立体重建、多层面重建、器官表面重建等,并能实时或近于实时显示。另外.不同角度的旋转、不同颜色的标记,使图像更具立体感 更直观、逼真。仿真内窥镜、三维CT血管造影技术也更加成熟和快捷。

${FDPageBreak}

 

  [B]三 、 PET-CT的图像融合[/B]

  PET与CT两种不同成像原理的设备同机组合,不是其功能的简单相加。而是在此基础上进行图像融合,融合后的图像既有精细的解剖结构又有丰富的生理.生化功能信息 能为确定和查找肿瘤及其它病灶的精确位置 定量、定性诊断提供依据。并可用X线对核医学图像进行衰减校正。

  PET-CT的核心是融合,图像融合是指将相同或不同成像方式的图像经过一定的变换处理 使它们的空间位置和空间坐标达到匹配,图像融台处理系统利用各自成像方式的特点对两种图像进行空间配准与结合, 将影像数据注册后合成为一个单一的影像。 PET-CT同机融合(又叫硬件融合、非影像对位)具有相同的定位坐标系统,病人扫描时不必改变位置,即可进行 PET-CT同机采集, 避免了由于病人移位所造成的误差。采集后两种图像不必进行对位、转换及配准,计算机图像融合软件便可方便地进行

  2D、3D的精确融合,融合后的图像同时显示出人体解剖结构和器官的代谢活动, 大大简化了整个图像融合过程中的技术难度、避免了复杂的标记方法和采集后的大量运算, 并在一定程度上解决了时间、空间的配准问题, 图像可靠性大大提高。

  PET在成像过程中由于受康普顿效应、散射、偶然符合事件、死时间等衰减因素的影响, 采集的数据与实际情况并不一致, 图像质量失真,必须采用有效措施进行校正,才能得到更真实的医学影像。同位素校正得到的穿透图像系统分辨率一般为12 mm、而 X线方法的穿透图像系统分辨率为1mm左右 图像信息量远大于同位素方法。用 CT图像对 PET进行衰减校正 使 PET图像的清晰度大为提高,图像质量明显优于同位素穿透源校正的效果(请看图2), 分辨率提高了 25%以上,校正效率提高了 30%,且易于操作。校正后的 PET图像与 CT图像进行融合, 经信息互补后得到更多的解剖结构和生理功能关系的信息 对于肿瘤病人手术和放射治疗定位具有极其重要的临床意义。

  PET-CT拥有三个图像处理工作站 其中两个超高速图像处理工作站分别对 PET和 CT采集的大量数据进行处理和图像重建,另外一个工作站进行 PET-CT的图像融合。 PET-CT采用迭代图像重建方法进行三维立体、多层面、器官表面等多种重建 ,迭代方法计算复杂 ,但精确度高,重建的图像可同时显示横断、冠状、矢状及任意斜面的层面,并可任意改变重建的位置和层厚,为临床医生提供更多的信息。

${FDPageBreak}

 

  [B]四 、PET-CT的临床应用[/B]

  PET-CT提供的预测和治疗处理信息比单独 PET和 CT多得多,它超越了单独PET和单独C丁的现有领域,既能完成超高档 CT的所有功能,又能完成 PET的功能——20 min能完成全身 CT扫描, 比单纯 PET的效率提高了 60%以上 还能提供比 CT更为准确、快速的心肌和脑血流灌注功能图像。 PET-CT融合图像能很好地描述疾病对生物化学过程的作用, 鉴别生理和病理性摄取, 能在疾病得到解

  剖证据前检测出早期发病征兆,甚至能探测到小于2 cm的亚临床型的肿瘤,为临床正确确定放疗的计划靶区(临床靶区与生物靶区相结合)、检测治疗过程中药物和放疗效果提供最佳的治疗方案和筛选最有效治疗药物。解剖定位加功能显像对于病变部位的定性诊断能力,对于肿瘤的诊断和分期.指导治疗、评价疗效、提高临床治愈率有着重要价值。它特别适用于精细放疗,能大大提高放疗计划的准确性;并能为Y刀、X刀定位。机器人手术、冷冻手术等定位;另外。还可作为随访手段成为病人整个治疗过程的组成部分。

  PET-CT的真正价值不仅仅在于疾病诊断。作为更深层次的临床检查手段,PET-CT采用放射性药物标记的基因能够达到基因成像的目的,可在分子水平上研究组织细胞代谢、蛋白质合成和基因变化的情况,提供生物化学活动.分子新陈代谢以及不同器官和组织的生理和病理的信息。从生命活动的本质上诊断疾病。由于提示病理变化、异常的生物化学活动的变化早于疾病引起的解剖变化 所以及早发现组织代谢功能异常 对口前仍不清楚的一些代谢疾病研究和受体疾病研究也有非常重要的意义!

(责编:吴任飞 )

展开剩余内容
相关问答
Q:什么是类PET?与PET-CT有什么不同

您好,PET就是指正电子发射断层现象,是一种核医学的检查手段。而PET-CT就是将PET和CT设计为一体,由一个工作站控制。后者比前者在疾病的诊断上定位更加准确细致。现在临床上一般都是用PET-CT检查,不过价格比较贵,具体可以咨询当地医院核医学科。我的回答对你有所帮助。

Q:核医学检查会不会致癌?

您好,核医学的检查是不会致癌的,它都是在范围值里来操控的。X光拍片每次用时0.2秒左右,每次的辐射量约为0.04毫希弗,而胸透用同样的射线,每做一次需要~3分钟,每次胸透人体所受辐射量为0.~毫希弗。一般做一次CT,人体所受的辐射量大于毫希弗。与CT、X线摄片等放射学检查不同的是,包括PET-CT在内的核医学检查利用的放射线不仅仅来源于检查设备,也来自于特定的显像剂。做一次PET-CT,患者所受的辐射量在25毫希弗左右。由以上的陈述,可得出核医学在平常的检查中是不致癌的。

Q:核医学检查会不会致癌?

您好,核医学的检查是不会致癌的,它都是在范围值里来操控的。X光拍片每次用时0.2秒左右,每次的辐射量约为0.04毫希弗,而胸透用同样的射线,每做一次需要~3分钟,每次胸透人体所受辐射量为0.~毫希弗。一般做一次CT,人体所受的辐射量大于毫希弗。与CT、X线摄片等放射学检查不同的是,包括PET-CT在内的核医学检查利用的放射线不仅仅来源于检查设备,也来自于特定的显像剂。做一次PET-CT,患者所受的辐射量在25毫希弗左右。由以上的陈述,可得出核医学在平常的检查中是不致癌的。

推荐视频

查看更多

相关资讯

更多

儿科 养生 饮食 整形 两性 问答 肿瘤
妇科 男科 新闻 美容 心理 减肥 男人
女人 肝病 眼科 糖尿 口腔 WHY 更多